
Boozt Fashion AB
Hyllie Boulevard 35
SE-215 32 Malmö

How we built our AI assistant
Must-See Case Study!

Viktor Pikaev
● Senior backend developer at Boozt
● 15+ years of experience
● Active contributor to Yii2 ecosystem
● A big fan of Rust and Haskel
● Plays Factorio

The base idea

Boozt FAQ
knowledge base

Boozt FAQ
chatbot

Boozt FAQ
knowledge base

text-embedding-ada-00
2

Incoming
question

Boozt FAQ embeddings Question
embeddings

Most similar FAQ text to
the question

GPT 3.5
turbo

Chatbot Instruction

ANSWER

Prompt
Engineerin
g

Embedding

Text

AI is not a magic wand

Complexity management is a
cornerstone of any changeable
system.

Reduce (hide) complexity

Make ways of extension and
modification easy and obvious

It’s important!

○ Conversation is a directed graph
(a big one)

○ With cycles
○ Edges can be enabled or disabled

dynamically
○ Conversation has a changeable

context
○ Some subgraphs have their own

contexts
○ Every income message should be

processed with extra checks
○ All of this is constantly changing and

expanding

Why is it complex?

We can’t reduce the complexity
We can only hide it

○ We can split a big graph to
several smaller and transit
between them

○ We can add a middleware
layer for all income
messages

○ We can use Symfony custom
tags and PHP attributes to
avoid configuration files

How to hide the complexity?

The Engine

○ Get a flow from the top of
a stack

○ Get the last transition
from the flow

○ Run the transition and get
a result DTO

○ Handle the result DTO
○ Go to the next iteration

Transition loop

Business logic extension

Add a new middleware
#[Middleware]
class PeerHasTerminatedIntentionMiddleware implements MiddlewareInterface
{
 public function process(Peer $peer, ?IncomingMessage $message): bool
 {
 // $peerContext = $peer->getContext();
 // ...
 }
}

Add a new flow
#[Flow(configClass: FlowConfig::class, contextClass: FlowContext::class)]
final readonly class KnowledgeBaseExplorationFlow implements FlowInterface
{
 public function __construct(private FlowConfig $config, private FlowContext $context)
 {
 }

 public function getConfig(): FlowConfig
 {
 return $this->config;
 }

 public function getContext(): FlowContext
 {
 return $this->context;
 }
}

Add a new transition
/**
 * @implements TransitionInterface<KnowledgeBaseExplorationFlow>
 */
#[Transition(flowClass: KnowledgeBaseExplorationFlow::class, name: ProcessQuestion::NAME)]
class ProcessQuestion implements TransitionInterface
{
 public const string NAME = 'process-question';

 public function transit(
 ?IncomingMessage $message,
 KnowledgeBaseExplorationFlow $flow,
 Peer $peer
): TransitionResultInterface {
 // $flowContext = $flow->getContext();
 // $flowConfig = $flow->getConfig();
 // $peerContext = $peer->getContext();
 // ...
 }
}

Easy extension with Symfony
○ Middleware implements the MiddlewareInterface and has the #[Middleware]

attribute

○ Flow implements the FlowInterface and has the #[Flow] attribute
○ If the flow needs to handle the result of the subflow it implements the

SubFlowResultHandler interface

○ Transition implements the TransitionInterface and has teh #[Transition]
attribute

○ Transition returns one of the Result DTOs

Questions ?

