
Protect sensitive data
with Symfony Secrets

by Viktor Pikaev

Viktor Pikaev

○ Backend Developer and Tech Lead
○ More than 16 years of experience
○ A big fan of Symfony
○ Establish Malmö Symfony Fans group

haru-atari.com linkedin.com

Keep secrets in secret

No sensitive data like passwords,
secret tokens and API keys should be
stored as plain text in the code.

So no one can access it:
○ people with access to repository
○ developers
○ github/gitlab

Variant 1
A separate config file # config.php

return array_merge(
 [
 'dbName' => 'my-database',
],
 include __DIR__ . '/config-local.php',
);

config-local.php
return [
 'dbLogin' => 'my-login',
 'dbPassword' => 'my-password',
];

A separate config file is manually placed to
the production server

Variant 1
A separate config file # config.php

return array_merge(
 [
 'dbName' => 'my-database',
],
 include __DIR__ . '/config-local.php',
);

config-local.php
return [
 'dbLogin' => 'my-login',
 'dbPassword' => 'my-password',
];

Pros
○ Itʼs simple

Cons
○ Requires manual updating
○ Requires access to the production

server

Variant 2
Environment variables

config.php
return [
 'dbName' => 'my-database',
 'dbLogin' => getenv('DB_LOGIN'),
 'dbPassword' => getenv('DB_PASSWORD'),
];

.env
DB_LOGIN=db-login
DB_PASSWORD=db-password

The values are passed through
environment variables during the
deployment process (pipeline).

The values are stored in the CD systemʼs
secrets.

Variant 2
Environment variables

config.php
return [
 'dbName' => 'my-database',
 'dbLogin' => getenv('DB_LOGIN'),
 'dbPassword' => getenv('DB_PASSWORD'),
];

.env
DB_LOGIN=db-login
DB_PASSWORD=db-password

Pros
○ Allows us to automate configuration

updating
○ Allows for the secrets rotation

Cons
○ Requires access to CD systemʼs

secrets to add new or change
existing values

Variant 3
Encrypted in-repo secrets

The values are stored in encrypted view in the repository.

They are decrypted on the production server with a private key.

The private key are stored in the CD systemʼs secrets
and delivered during the deployment process.

Variant 3
Encrypted in-repo secrets

Pros
○ Allows us to automate configuration updating
○ Allows us to add new or change existing values

without access to CD systemʼs secrets
○ Can be combined with passing values through environment variables

Cons
○ Doesnʼt allow for secrets rotation

What to choose?

CD systemʼs secrets for storing
infrastructure secrets.

Encrypted in-repo secrets for storing
application secrets.

Symfony Secrets

Itʼs a build-in implementation of the
encrypted in-repo secrets.

It seamlessly integrates secrets to
standard Symfony configuration system.

The application treats secrets like normal
environment variables.

symfony.com

Symfony Secrets
How does it work?

1. Generate a pair of encryption keys.
2. Encrypt secrets with the public key.
3. Deliver the private key to production
4. Use the private key on production

server to decrypt secrets.
5. Enjoy safety!

Step 0
Prepare the project

Move all sensitive values to the
environment variables.

Symfony provides secrets like a normal
environment variables.

.env
MY_SECRET_TOKEN=adf2bj3hb234234

parameters.yaml
parameters:
 token: '%env(MY_SECRET_TOKEN)%'

bootstrap.php
use Symfony\Component\Dotenv\Dotenv;

require __DIR__ . '/vendor/autoload.php';
(new Dotenv(true))->load('.env');

Step 1
Generate the encryption keys

Generate encryption keys for each environment:
$ APP_RUNTIME_ENV={env}
$ php bin/console secrets:generate-keys

It generates a pair of keys:
config/secrets/{env}/{env}.decrypt.private.php
config/secrets/{env}/{env}.encrypt.public.php

Step 1
Generate the encryption keys

Add the production private key file to
.gitignore. It should never be in the repo.

Use different key pairs for different
environments.

Change nothing in the “config/secrets/*”
directories manually. All files there are
auto generated.

Step 2
Encrypt the secrets

Add a new or update an existing secret:
$ APP_RUNTIME_ENV={env}
$ php bin/console secrets:set {name}

Symfony will prompt the value, encrypt it and save it
into the “config/secrets/{env}” directory.

To remove an existing secret run:
$ APP_RUNTIME_ENV={env}
$ php bin/console secrets:remove {name}

Step 2
Encrypt the secrets

We do not need the private key for adding
or updating secrets. So we can do it easily
by ourselves.

No access requests, no waiting, no delais!

Step 2
Encrypt the secrets

Environment variables have higher priority
than secrets. A secret will be overridden
with the environment variable with the
same name.

Step 3
Deliver the private key to production

We have to keep the production private key safely out of the repository!

It should be delivered to production and be placed in the:
config/secrets/prod/prod.decrypt.private.php

Symfony will use it automatically. We donʼt need to do anything else.

Step 3
Deliver the private key to production

You can pass the private key with the
SYMFONY_DECRYPTION_SECRET
environment variable instead of the file.

Step 4 (optional but strongly recommended)
Decrypt secrets on production

To decrypt all secrets and put them to the .env.prod.local file run:
$ php bin/console secrets:decrypt-to-local --force

○ It allows non-Symfony php code to access secrets with the getenv() function.
○ It gives us a small performance improvement. Small but nice.

Step 4
Decrypt secrets on production

Dotenv should be configured and
work correctly to load values from
the .env.prod.local file properly.

Step 5
Enjoy safety (but never relax)

You are awesome!

There are two pies on the shelf. Take the
one in the middle. Itʼs yours.

What’s next?

Trivy is the most popular open source
security scanner, reliable, fast, and easy to
use.

Add it to your pipeline to make sure all
new secrets are stored properly.

trivy.dev

Malmö Symfony Fans

◻ Do you love Symfony and think that it's the best framework in the world?
◻ Do you want to have a strong Symfony community in Malmö?
◻ Do you have some experience with Symfony you can share with others?
◻ Are you new to Symfony and in search of knowledge?
◻ Are you a non-Symfony developer who would like to expand your

knowledge?

Join us and make Symfony great again!

slides

linkedin.com

That’s all!
Questions?

