
Boozt Fashion AB
Hyllie Boulevard 35
SE-215 32 Malmö

Protect sensitive data
with Symfony secrets

Keep our secrets in secret

All sensitive data like passwords, secret
tokens and API keys should not be stored as a
plain text in the code. So no one (Gitlab,
developers, etc.) has access to them.

Slide type

RIGHT IMAGE
WITH TEXT

How does it work

1. Generate a pair of encryption keys.
2. Encrypt secrets with the public key.
3. Use the private key on the production

server to decrypt secrets.
4. Profit!

Slide type

RIGHT IMAGE
WITH TEXT

Step 0
Prepare the project

First of all we need to move all sensitive values
to the environment variables.

Symfony provides secrets like a normal
environment variables.

Step 1
Generate the encryption keys

We need to generate encryption keys for each environment:
$ APP_RUNTIME_ENV={env}
$ php bin/console secrets:generate-keys

It generates a pair of keys:
config/secrets/{env}/{env}.decrypt.private.php
config/secrets/{env}/{env}.encrypt.public.php

Potential pitfalls

Add the productionʼs private key file to the
.gitignore. It should never be in the repo.

Use different key pairs for different
environments.

Change nothing in the config/secrets/*
directories manually. All files there are auto
generated.

Step 2
Encrypt the secrets

We can add a new or update an existing secret:
$ APP_RUNTIME_ENV={env}
$ php bin/console secrets:set {name}

Symfony will prompt the value, encrypt it and put it into the
config/secrets/{env} directory.

Benefit

We do not need the private key for adding or
updating secrets. So we can do it easily by
ourselves.

No tickets, no waiting, no delais!

Potential pitfalls

Environment variables have higher priority
than secrets. The secret will be overridden
with the environment variable with the same
name.

Step 3
Deliver the private key to production

We have to keep the production private key safely out of the repo!

It should be delivered to production and be placed in the:
config/secrets/{prod-env}/{prod-env}.decrypt.private.php

Symfony will use it automatically. We donʼt need to do anything else.

Alternative

You can pass the private key with the
SYMFONY_DECRYPTION_SECRET
environment variable instead of the file.

Step 4 (optional but strongly recommended)
Decrypt secrets on production

Run to decrypt all secrets and put them to the .env.{env}.local file:
$ php bin/console secrets:decrypt-to-local --force

It allows Dotenv to put all secrets into environment variables.

Benefit

It allows other non-Symfony php code to
access secrets with the getenv() function.

It will decrease the load on the server.

Potential pitfalls

Dotenv should be configured and work
correctly to load secrets from the
.env.{env}.local file properly.

Step 5
Enjoy safety (But never relax)

You are awesome! There are two pies on the shelf. Take the one in the
middle. Itʼs yours.

Questions?

